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ABSTRACT 

The C4ISR Architecture Framework document issued by the Department of Defense specifies 

three views of an information architecture and defines a set of products that describe each view. 

These architecture views are to serve as the basis for C4ISR system development and 

acquisition. The Framework does not provide a process for architecture design. In this paper, 

information architectures are described in the context of Structured Analysis and then the 

architecture views of the Framework and the related products are interpreted in that context. A 

methodology for architecture design is developed that is then implemented using Structured 

Analysis and object orientation in two companion papers. 
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1.  INTRODUCTION 

In a changing world, the Department of Defense has to cope with increased uncertainty about 

requirements, rapid changes in technology, changes in organizational structures, and a widening 

spectrum of missions and operations.  One way to deal with these uncertainties is to be able to 

rapidly mix and match organizations with composite capabilities to suit a particular situation.  To 

do this requires an unprecedented level of interoperability in information systems.  To achieve 

this flexibility, DoD has looked to information architectures that can provide current or future 

descriptions of a “domain” composed of components and their interconnections, actions or 

activities those components perform, and rules or constraints for those activities.  These 

architectures, while they will change over time, will change at a much slower rate than the actual 

systems they represent.  Because of their stability, they can act as important guides to acquisition 

decisions as well as defining operational concepts.  One domain of information systems that 

directly supports military operations is Command, Control, Communications, Computer, 

Intelligence, Surveillance, and Reconnaissance (C4ISR). The goal is to describe architectures 

using multiple views that answer operator’s questions regarding the operational capability that 

systems built conformant to the architecture can provide. Another goal is to support the 

acquisition community in its efforts to acquire interoperable system.  A seamless process from 

knowledge elicitation to architecture design and evaluation is desired.   

In December 1997, the Office of the Secretary of Defense published the C4ISR Architecture 

Framework, Version 2.0. [C4ISR, 1997]2  In February 23 1998, the Under Secretary of Defense 

(Acquisition and Technology), the Assistant Secretary of Defense (Command, Control, 

Communications, and Intelligence) and the Joint Staff Director for Command Control 

Communications and Computers (C4) issued a memorandum that stated: 

 “We see the C4ISR Architecture Framework as a critical element of the strategic direction in 

the Department, and accordingly direct that all on-going and planned C4ISR or related 

architectures be developed in accordance with Version 2.0.  Existing C4ISR architectures will be 

re-described in accordance with the Framework during appropriate revision cycles.”   

                                                 
2 The C4ISR Architecture Framework, version 2.0, document can be found in a number of DOD and non-DOD 
websites that require different forms of access. The System Architectures Lab maintains a copy in .pdf format at 
http://viking.gmu.edu/http/c4isrmay2000/index.html 
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The Architecture Framework provides common definitions, data, and references, and 

describes a set of products that comprise three views of an architecture.  The Framework 

provides little guidance on how to produce those products.  To comply with the directive, 

organizations must develop their own process and many of them have done so.  This poses a 

challenge for at least two reasons.  First, the three architecture views (Operational, Systems, and 

Technical Architecture views) and their products are new constructs that are not supported 

directly by existing systems engineering formalisms and tools.  Second, while the products 

provide a great deal of information, it is not clear that, in the absence of a well thought out 

process, they will be mutually consistent so that they can be used to answer questions about the 

capabilities that systems built in conformance with the architecture will provide.  

One of the issues is that the C4ISR Architecture Framework, version 2.0, makes a number of 

assertions (Section 1.1 of the Framework) regarding its purpose that are hard to justify in view of 

the community’s experience in the last three years and the analysis of the constructs that has 

been carried out. While the application of the Framework does enable architectures to contribute 

to building interoperable and cost-effective military systems, and does have the potential  for 

architectures developed by different organizations to be interrelatable  and possibly comparable, 

it is hard to imagine how they would be integratable. The Framework does not provide guidance 

regarding these latter aspects. 

 One of the premises of the work presented in this and the two companion papers is that the 

derivation of an executable model of the architecture from the three views and the associated 

integrated dictionary provides a basis for understanding the interrelationships among the various 

architecture products and establishes the foundation for implementing a process for assessing and 

comparing architectures. The paper does not advocate that the creation of an executable model 

be mandated as part of the Architecture Framework. Rather, it argues that given the particular 

form of the Framework products  and the absence of  well established processes for developing a 

set of  consistent and coherent products, architects may be well advised to create an executable 

model as a means analyzing the characteristics of their architecture and ascertain whether 

behavioral requirements are met.  

This article describes the role of the architect, establishes the criteria for determining the data 

needed in an information architecture to support the role of the architect, examines the C4ISR 
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Framework products, and provides a mapping from the Structured Analysis products to the 

Framework products.  This mapping forms the basis for two alternative approaches documented 

in the companion papers, one based on Structured Analysis [Wagenhals et al., 00] and one based 

on Object-Orientation [Bienvenu et al., 00].  

To address these issues, the remainder of this article is divided into five sections.  Section 2 

describes the fundamentals of architectures and the role of the architect.  Section 3 presents a 

generic process for creating an architecture of an information system that is capable of describing 

behavioral and performance aspects of the architecture to the customer.  Section 4 describes the 

C4ISR Architecture Framework construct, including a brief description of the three architecture 

views and their products.  Section 5 shows the mapping from the Structured Analysis products to 

the Framework products; this mapping sets the basis for the alternative approaches. 

2.  ON ARCHITECTURES  

2.1 Architects and Architectures 

The concept of architectures and the business of creating them have been around for 

millennia.  Indeed, the Greek word ���������	
(architecton) means master builder or master 

mason.  The term describes one who designs and builds structures whose form and function are 

both appealing and useful.  Today, when we think of architectures, we think of buildings and 

monuments that are the creation of named architects.  The main contribution of the architect is 

the conceptualization and design of a unique structure to meet the client’s needs.  The architect 

has the special role of eliciting and converting the needs and desires of the customer that 

commissions him into a design that will be especially satisfying to that customer.   

In a modern context, we think of hiring an architect when we want to create a structure that is 

both unprecedented and complex, particularly if our needs are initially ill structured.  [Rechtin, 

91, 92]  An example is the building of a custom house.  Assuming that one is interested in more 

than just a house whose plans can be downloaded from the internet or a “standard” house offered 

by a national or local building company, one may decide to hire an architect to create the 

description of the house.  The architect will elicit needs and desires from the customer and, using 

a combination of engineering and art, will create a series of models (drawings, scale replicas, 3D 

visualizations) of the house.  The models are abstract at first and become more specific as the 
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customer provides feedback to the architect.  Once an architecture that is satisfactory to the 

customer has been created, the architectural models are converted into a set of blueprints that are 

provided to a general contractor who is responsible for building the house in accordance with the 

blueprints that have been derived from the architectural drawings. Note also that the actual 

construction must be compliant with the building codes that apply to that type of structure in that 

particular locality.  

From this example and by analogy, it is possible to derive several characteristics of system 

architects and the architectures they produce.  The first is that an architect is needed only if the 

system is unprecedented and complex. [Rechtin, 91, 92]  If satisfactory, working systems have 

already been built and the designs exist, there is no need for an architect.  An architect is not 

needed if the system is very simple and can be constructed directly by a contractor. The 

architect’s responsibility is different from the general contractor’s.  The architect is driven by the 

special needs of the customer and tends to develop the architecture in a top-down manner. 

[Rechtin, 91, 92]  Indeed, the task of the architect is to elicit those needs and to produce a 

description that can demonstrate to the customer that the system to be produced in conformance 

with the architecture will satisfy the customer’s wants and needs.  This means that the 

architecture does not include the details of the final system designs.   

A key issue in the above description is where the architect’s work in describing the 

architecture ends and the system design begins. The blueprints are usually thought as the 

representation of a design – the implementation of an architecture, not as a description of an 

architecture. In the Framework, the architecture description is referred to as a blueprint that then 

enters the design, development, and acquisition process. The problem of demarcation between 

architecture and design (never an easy one to determine) is especially daunting in the case of 

C4ISR systems where any future architecture will be populated in the design phase by existing 

systems, the so-called legacy systems.  So, while the architecture definition process is thought of 

as being top-down, the presence of so many legacy systems introduces constraints in the design 

of the architecture that are best addressed in a bottom-up approach. This particular issue is one of 

the drivers for the approach presented in this paper and forms the basis for some of the 

conclusions drawn. 
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The architect develops and presents the architecture as a set of abstract views or models.  The 

abstraction occurs in two dimensions, generalization and composition.  The architect begins with 

a very general description of the system.  Based on discussions with the customer, the architect 

arranges and specializes these components to suit the customer’s needs and desires.  Note that 

the number of components in the architecture and, thus, its complexity does not need to increase 

substantially in this specialization process.  The number of components does increase as more 

detail is incorporated in the architecture.  Adding detail is generally accomplished by 

decomposing the basic components of the architecture into their constituent parts.  

Decomposition can significantly increase the number of components of the architecture and thus 

its complexity.  Because of this, the architect should use decomposition only as necessary to 

address the questions and concerns of the customer.  The customer and the architect assume that 

these components will work properly because they will be constructed and installed in 

accordance with established codes and guidelines.  The actual system design and implementation 

will involve the specialization of the architecture and the addition of all of the details of the 

design so that the system can be manufactured.  This specialization process is the task of the 

general contractor or system engineer.  The actual system will be the most specialized version of 

the architecture.  There can be many ways of specializing a single architecture into actual 

systems.  The selection of the actual design can be determined by cost and technology factors.  

Thus, an architecture can be a valid description of a way of satisfying a customer’s need over a 

long period, even as the specific techniques for implementing the architecture change.   

The concepts and characteristics applicable to architecting buildings also apply to architecting 

information systems.  One thinks of an architecture as being implemented by many diverse 

interacting systems.  The architect needs to be knowledgeable not only about the individual 

systems, but also about the interrelationships among them.  Furthermore, the architect must use 

creativity and vision because of the unprecedented and complex nature of the design and the lack 

of an initial clear definition of the needs and requirements for the system [Levis, 99].  It is 

important that the architect be able to show and discuss with the customer what properties the 

architecture will have.  This means that the architectural models must be capable of providing 

insight into the logical and behavioral aspects of the architecture and the performance aspects of 

systems that are conformant to the architecture.  This important criterion influences the process 

and the techniques for developing an architecture of a system.   
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Systems Architecting [Rechtin, 91, 92; Rechtin and Maier, 96] is part of the system 

engineering process and relies on many of the methodologies that have been developed over 

time.  The architect has many tools and techniques available to describe the architecture.  Two 

major paradigms that are appropriate are the traditional Structured Analysis and Design 

Technique (SADT) and the Object-Oriented approach that originated with software systems.  

Both offer advantages and both are discussed at length in this and the two companion articles 

[Wagenhals et al., 00; Bienvenu et al., 00].  Both approaches can fall short of the requirement of 

being able to convey the logical, behavioral, and performance properties of the architecture.  

This is because both approaches rely on static pictures, diagrams, and textual descriptions to 

define the architecture.  However, an architecture is instantiated with dynamic systems that 

interact with their environment over time.  To fully describe and understand the dynamic aspects 

of the system requires an executable model.     

 

2.2  System Architecting using Structured Analysis 

In the basic systems engineering approach using Structured Analysis, an architecture is 

composed of two constructs: the Functional Architecture (view) and the Physical Architecture 

(view)3.  The Technical Architecture view in the Framework, while not part of the Structured 

Analysis approach, corresponds, in broad terms, to the building code that any architect must take 

into consideration. The technical architecture view is included in the discussion because of its 

relevance to the DOD goal of acquiring interoperable systems.  The term view is used to 

emphasize that there is a single architecture of the system.  The complete representation of that 

architecture requires different views.  These views can be categorized by their perspective.   

In defining an architecture, several perspectives need to be described.  First, since the 

architecture will be created so that the systems that populate it will perform some useful 

function, we need to describe the process or activities that need to take place in order for the 

systems to accomplish their purpose.  In an information system, the processes receive and 

transform data that “flow” between them.  These processes or activities follow rules that 

                                                 
3 In the systems engineering literature, the term system architecture has often been used to denote the physical 
architecture. This has been the source of much confusion because the term system architecture used in the C4ISR 
Architecture Framework denotes a different construct. 
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determine the conditions under which they occur and the type of outputs they produce.  In 

addition, the processes should occur in some order based on the initial conditions of the system, 

and several processes may occur concurrently and asynchronously.  In addition to the processes 

or activities, it is necessary to describe the components that will implement the design: the 

hardware, software, personnel, and facilities that will comprise the C4ISR system and perform 

the processes.   

This fundamental notion leads to the definition of the two basic architectural constructs in 

Structured Analysis. A Functional Architecture is a set of activities or functions, arranged in a 

specified partial order that, when activated, achieves a set of requirements. Similarly, a Physical 

Architecture is a representation of the physical resources, expressed as nodes, that constitute the 

system and their connectivity, expressed in the form of links. Both definitions should be 

interpreted broadly to cover a wide range of applications; furthermore, each may require multiple 

representations or views to describe all aspects. 

Before even attempting to develop these representations, the operational concept must be 

defined. This is the first step in the architecture development process. An Operational Concept is 

a concise statement that describes how the goal will be met. There are no analytical procedures 

for deriving an operational concept for complex, unprecedented systems. On the contrary, given 

a set of goals, experience, and expertise, humans invent operational concepts. It has often been 

stated [Rechtin, 91] that the development of an architecture is both an art and a science. The 

conceptualization of an operational concept falls clearly on the art side. A good operational 

concept is based on a simple idea of how the over-riding goal is to be met. For example, 

“centralized decision making and distributed execution” represents a very abstract operational 

concept that lends itself to many possible implementations, while an operational concept such as 

the “client-server” one is much more limiting.  As the architecture development process unfolds, 

it becomes necessary to elaborate on the operational concept and make it more specific.  The 

clear definition and understanding of the operational concept is central to the development of 

compatible functional and physical architectures. 

Analogous to the close relationship between the operational concept and the functional 

architecture (to the extent that often a graphical description of the operational concept is 

improperly presented as the functional architecture,) is the relationship between the technical 
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architecture and the physical one. A Technical Architecture (TA) view is a minimal set of rules 

governing the arrangement, interaction and interdependence of the parts or elements whose 

purpose is to ensure that a conformant system satisfies a specified set of requirements.[C4ISR, 

97]  It provides the framework upon which engineering specifications can be derived, guiding 

the implementation of the system. It can be compared to that part of the building code that 

provides guidance for the new building to be able to connect to the existing infrastructure of its 

planned location by characterizing the attributes of that infrastructure, as well as the exceptions 

to the code.  

It is the Technical Architecture that provides the connection between the abstract descriptions 

of Physical and Functional Architecture views and the implementation of the detailed system 

design. When architects define the Technical Architecture view, they are providing guidance on 

the further specialization and decomposition of the components of the Physical and Functional 

Architecture that will be accomplished in the detailed engineering design of the system.   

All of these representations of the architecture, even when they describe the dynamic behavior 

of the architecture, are static.  They are inadequate for analysis of the behavior and performance 

aspects of the architecture. In the next section, the details of the models used in these 

representations are described.  They contain a great deal of information but, in general, they are 

ill suited to answering the main concerns of the customer.  In order to analyze the behavior and 

performance of the architecture and address the concerns of the customer, an executable model is 

derived from them. After all, the systems to be designed are dynamic systems. An executable 

model is a dynamic model; it can be used to analyze the properties of the architecture and it can 

be used to carry out simulations. However, it also serves in a subtler, but very important role. It 

becomes the litmus test by which one can determine whether the description of the system 

architecture, as given by a set of static representations or models, is sufficient with respect to the 

set of questions to be asked of the architecture when these questions involve the dynamic 

behavior of the C4ISR system4. Indeed, the methodologies, whether Structured Analysis based or 

Object-Oriented based, become rigorous when an executable model is derived and the condition 

is imposed that all information contained in the executable model must be traced back to one or 

more of the static views.   

                                                 
4 Further discussion on this issue appears in Section 5. 
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The architecture development process can be characterized as consisting of three phases: the 

Analysis phase in which the static representations of the Functional and Physical Architecture 

views are obtained using the operational concept to drive the process and the Technical 

Architecture view to guide it, the Synthesis phase in which these static constructs are used, 

together with descriptions of the dynamic behavior of the architecture (often referred to as the 

Dynamics model), to obtain the executable model of the architecture, and the Evaluation  phase 

in which measures of performance (MOPs) and measures of effectiveness (MOEs) are obtained. 

This three phase process is shown schematically in Fig. 1. 
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The next section describes the first of the two paradigms for the architecture development 

process:  Structured Analysis and its tools.  The reason is that the C4ISR Architecture 

Framework, as currently described, has a strong Structured Analysis flavor. While Object-

Orientation is not excluded explicitly, the language, terminology, and examples used all are 

based on Structured Analysis. However, while the two approaches are conceptually different, 

many of the same tools can be used to construct the various representations that comprise each 

approach.  Furthermore, once the executable model is obtained, whether through Structured 

Analysis or Object-Orientation, the evaluation phase is the same.  After discussing the evaluation 

phase, we will show in Section 5 how to map the information contained in the Structure Analysis 

products into the C4ISR Architecture Framework Version 2 essential products.  It will be clear 

that these products can be derived from a well defined description of the architecture regardless 

of the approach used to create the architecture; two equivalent but not identical sets of supporting 

products can also be derived.   
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Figure 2.  Behavior as the Locus of Discourse  
 

3.  STRUCTURED ANALYSIS APPROACH 
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The Structured Analysis approach has its roots in the Structured Analysis and Design 

Technique (SADT) that originated in the 50’s [Marca and McGowan, 87] and encompasses 

Structured Design [Yourdon and Constantine, 75], Structured Development [Ward and Mellor, 

86], the Structured Analysis approach of DeMarco [79], Structured Systems Analysis [Gane and 

Sarson, 78], and the many variants that have appeared since then, often embodied in software 

packages for computer-aided requirements generation and analysis. This approach can be 

characterized as a process-oriented one [Solvberg and Kung, 93] in that it considers as the 

starting point the functions or activities that the system must perform. A second characterizing 

feature is the use of functional decompositions and the resulting hierarchically structured 

diagrams. However, to obtain a specification of the architecture that allows the derivation of the 

executable model, in addition to the process or activity model, a data model, a rule model, and a 

dynamics model are required. Each one of these models contains inter-related aspects of the 

architecture description. For example, in the case of an information system, the activities or 

processes receive data as input, transform it, and produce data as output. The associated data 

model describes the relationships between these same data elements. The activities take place 

when some conditions are satisfied. These conditions are expressed as rules associated with the 

activities. But for the rules to be evaluated, they require data that must be available at that 

particular activity with which the rule is associated; the output of the rule also consists of data 

that control the execution of the process. Furthermore, given that the architecture is for a 

dynamic system, the states of the system need to be defined and the transitions between states 

identified to describe its dynamic behavior. State transition diagrams are but one way of 

representing this information. Underlying these four models is a data dictionary or, more 

properly, an integrated system dictionary, in which all data elements, activities, rules, and flows 

are defined. The construct that emerges from this description is that a set of inter-related views, 

or models, is needed to describe an architecture using the structured analysis approach. 

In an ideal world, a tool would exist that would support all these models of an architecture and 

generate a consistent data dictionary. While the four types of models exist in many forms and 

software tools for their generation are available, they have been developed independently from a 

different starting point: it is possible to approach the problem by starting with a data model (data 

oriented approach) or with a rule model (rule oriented approach). At this time, the architect must 

use a suite of tools and, cognizant of the inter-relationships among the four models and the 
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features of the tools chosen to depict them, work across models to make the various views 

consistent and coherent. Moreover, he must obtain a single, integrated system dictionary from 

the individual dictionaries generated by the various tools. 

The Activity model, the Data model, the Rule model and the supporting Integrated System 

Dictionary, taken together, constitute the Functional Architecture view of the system (Fig. 3). 

The term Functional Architecture has been used to describe a range of representations -- from a 

simple activity model to the set of models defined here. What a Functional Architecture does not 

contain is the specification of the physical resources that will be used to implement the functions 

or the structure of the human organization that is supported by the information system. These 

descriptions are contained in the Physical architecture.  
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Figure 3.  Components of the Functional Architecture 

 

3.1  Functional Decomposition and Activity Model 

In a process oriented approach such as structured analysis, the architecture development 

process can start with a very abstract operational concept. As the analysis evolves, the 

operational concept becomes more specific. The operational concept is often described 

pictorially with an associated narrative that explains how the operation is to take place. Cartoons 

and Clip Art are often used in the graphical representation.  This depiction is often 

inappropriately referred to as an architecture. It is not. It is equivalent to a sketch that an architect 
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may make of a house, how it sits on the land and where the main functional areas are. It is not 

the model of the house itself or the schematics that would allow someone to build this house. 

Given an operational concept at some level of abstraction, the first step in the development of 

the functional architecture is the Functional Decomposition.  Starting with a verb or verb phrase 

that articulates the function of the system, a first level decomposition is done into functions that 

are part of the top level function. These first level functions are mutually exclusive and could be 

totally exhaustive. Each of these functions can be decomposed further into level two functions 

that are parts of it, and so forth. This decomposition can be shown in outline form or graphically 

as a tree structure. In various approaches, specific names are given to the decomposition levels: 

for example “mission -- function -- task” is one set of labels (Fig. 4). The decomposition is 

carried out to as many levels as is necessary, always guided by the operational concept. 

However, keeping the levels as few as possible is recommended for two reasons: each additional 

level increases substantially the complexity of the problem (and may not be supportable by the 

other parts of the architecture process) and because a multilevel decomposition may introduce 

implicitly a physical architecture - the way the functions are partitioned may specify prematurely 

implementation solutions. One useful rule is to decompose until each function can be assigned to 

a single physical resource. To achieve that, it is implied that the physical architecture is 

available. This is usually not the case; the two should be developed in parallel with much 

interaction between them. Indeed, the functional decomposition is an iterative process and should 

be done with care; it is difficult to go back to the higher levels and make changes to them -- the 

lower levels and everything related to them will have to be re-examined. 

MISSION 

FUNCTION  FUNCTION FUNCTION 

TASKTASK TASK  

Figure 4.  The Tree Structure of the Functional Decomposition 

There are two primary methods in wide use for the representation of an Activity Model. The 

first, IDEF05, has systems engineering roots, while the second, Data Flow Diagrams, has its roots 

                                                 
5 IDEF0 stands for ICAM (Integrated Computer Aided Manufacturing) Definition Language 0. 
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in software systems engineering. The National Institute of Standards and Technology (NIST) has 

published Draft Federal Information Processing Standard #183 for IDEF0; this is not the case for 

DFD. There are various variants and extensions of the Data Flow diagramming approach. Each 

of the approaches has advantages and disadvantages; choosing one of them depends on the 

features of the problem to be addressed. For the history of IDEF0, see Marca and McGowan [88] 

and for Data Flow Diagrams, see Yourdon [89] or Rumbaugh et al. [91]. IDEF0 is described 

briefly in this section. 

IDEF0 is a subset of the Structured Analysis and Design Technique (SADT). It is a modeling 

language for developing structured graphical representations of the activities or functions of a 

system. It has been designed to describe and aid in understanding complex systems. It is a static 

representation, designed to address a specific question from a single point of view. It has two 

graphical elements: a box, which represents an activity, and a directed arc that represents the 

conveyance of data or objects related to the activity. A distinguishing characteristic of IDEF0 is 

that the sides of the activity box have a standard meaning, as shown in Fig. 5.  Arcs entering the 

left side of the activity box are inputs, controls enter the top side, and mechanisms or resources 

used to perform the activity enter the bottom side. Arcs leaving the right side are outputs -- the 

data or objects generated by the activity. When IDEF0 is used to represent the activity model in a 

Functional Architecture, mechanisms are not needed; they are part of the Physical Architecture. 

INPUTS OUTPUTS

CONTROLS

MECHANISMS

A0
VERBINPUTS OUTPUTS

CONTROLS

MECHANISMS

A0
VERB

 

Figure 5.   Box and Arrow Semantics in IDEF0 

Verbs or verb phrases are inscribed in the activity boxes to define the function represented. 

Similarly, arc inscriptions are used to identify the data or objects represented by the arcs. There 

are detailed rules for handling the branching and the joining of the arcs. [FIPS 183] 
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A key feature of IDEF0 is that it supports hierarchical decomposition. At the highest level, the 

A-0 level, there is a single activity that contains the root verb of the functional decomposition. 

This is called the context diagram and also includes a statement of the purpose of the model and 

the point of view taken. The next level down, the A0 level, contains the first level decomposition 

of the system function and the interrelationships between these functions. It is a single page. 

Each one of the activity boxes on the A0 page can be further decomposed into the A1, A2, A3, ... 

page, respectively. A typical IDEF0 diagram of the first two levels -- A-0 and A0 -- is shown in 

Fig. 6. There are two inputs, one control, and three outputs.  
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Figure 6.  First Two Levels of an IDEF0 Model 

Associated with IDEF0 is a data dictionary which includes the definitions and descriptions of 

the activities, listing and description of the inputs, controls, and outputs, and, if entered, a set of 

activation rules of the form  “preconditions --> postconditions.” These are the rules that indicate 

the conditions under which the associated function can be carried out. In using IDEF0 to 

represent an information system (a class of systems not well suited to an IDEF0 representation 

when one considers the origins of language) it is appropriate to characterize or type the data 

elements contained in the arcs. This is better done, however, in the data model. 
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3.2  Data Model 

The arcs in the activity model of an information architecture represent data or objects. The 

purpose of a data model is to analyze the data structures and their relationships independently of 

the processing that takes place, already depicted in the activity model. There are two main 

approaches with associated tools for data modeling: IDEF1x and Entity-Relationship (E-R) 

diagrams. Both approaches are used widely. The National Institute of Standards and Technology 

has published Draft Federal Information Processing Standard #184 [FIPS 184] in which IDEF1x 

is specified. There are many books that describe E-R diagrams: Sanders [95], Yourdon [89], and 

McLeod [94]. 

IDEF1x (IDEF1 extended) is a modeling language for representing the structure and 

semantics of the information in a system. The elements of IDEF1x are the entities, their 

relationships or associations, and the attributes or keys. An IDEF1x model is comprised of one or 

more views, definitions of the entities, and the domains of the attributes used in the views.   

An entity is the representation of a set of real or abstract objects that share the same 

characteristics and can participate in the same relationships. An individual member of the set is 

called an entity instance. An entity is depicted by a box; it has a unique name and a unique 

identifier. If an instance of an entity is identifiable with reference to its relationship to other 

entities it is called identifier dependent. A slightly different form of the box is used to distinguish 

identifier independent and dependent entities. The box depicting the entity instance is divided 

into two parts: the top part contains the primary key attributes; the lower one the non-primary 

key attributes. Every attribute must have a name (expressed as a noun or noun phrase) that is 

unique among all attributes across the entities in the model.  The attributes take values from their 

specified domains – this automatically establishes the type of the attribute.  This formalism is 

shown in Fig. 7. 
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Figure 7.  Independent and Dependent entities with Key and Non-Key attributes 

Relationships between entities are depicted in the form of lines that connect entities; a verb or 

verb phrase is placed beside the relationship line.  The connection relationship is directed -- it 

establishes a parent-child association -- and has cardinality. Special symbols are used to at the 

ends of the lines to indicate the cardinality. The relationships can be classified into types such as 

identifying or non-identifying, specific and non-specific, and categorization relationships. The 

latter, for example, is a generalization/specialization relationship in which an attribute of the 

generic entity is used as the discriminator for the categories. A simple example is shown in Fig. 8 

in which three types of vehicles are defined as categories of vehicles.  

vehicle_id

att ribute
att ribute
att ribute

VEHICLE /#

vehicle_type

LandAir Sea
vehicle_idvehicle_idvehicle_id

 

Figure 8.  Example of generic and category entity specification using a discriminator 
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3.3  Rule Model 
 

In a rule oriented model, knowledge about the behavior of the architecture is represented by a 

set of assertions that describe what is to be done when a set of conditions evaluates as true. These 

assertions, or rules, apply to specific functions defined in the activity model and are formulated 

as relationships among data elements.  There are several specification methods that are used 

depending on the application. They include Decision Trees, Decision Tables, Structured English, 

and Mathematical Logic.  Each one has advantages and disadvantages; the choice often depends 

on the way that knowledge about rules has been elicited and on the complexity of the rules 

themselves. 

A Decision Tree is most appropriate when each rule has as a consequent a single action, the 

execution of an activity. A Decision Tree has a single root that represents the first decision. 

Subsequent decisions are depicted as branches and leaves of the tree. Each node of the tree 

represents a decision, while the leaves indicate the resulting actions.  A Decision Table is more 

useful when a set of conditions that evaluates as true results in multiple actions. The table is 

partitioned in four sections as shown in Fig. 9. The Condition stub contains the list of the 

decision variables, while the Action stub contains the list of actions. The Condition matrix 

consists of columns with each column depicting a combination of conditions. The columns of the 

Action matrix show which actions are to take place when the conditions in the corresponding 

condition column evaluate as true.   

Both Decision Trees and Decision Tables show only selection or decision constructs; they do 

not show sequencing or repetition and iteration. Structured English shows all three control 

structures. In Structured English, the rules are expressed using nested patterns of the form “if-

then-else-so.” The action that results when the conditions evaluate as true is expressed in the 

form of a command: then do this.  
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Figure 9.  The four parts of a Decision Table 

 

Of course, mathematical logic can be used (whether Symbolic logic or Predicate logic) to 

represent the set of rules.  This is a very general representation that allows for the modeling of 

very complex rules.  

 
3.4  Dynamics Model 
 

The fourth type of model that is needed is one that characterizes the dynamic behavior of the 

architecture. This is not an executable model, but one that shows the transition of the system 

state as a result of events that take place. The state of a system can be defined as all the 

information that is needed at some time to so that knowledge of the system and its inputs from 

that time on determines the outputs. The state space is the set of all possible values that the state 

can take.  

There is a wide variety of tools for depicting the dynamics, with some tools being more 

formal than others: state transition diagrams, state charts, event traces, key threads, etc. Each one 

serves a particular purpose and has unique advantages.  

A State Transition diagram is a representation of a sequence of transitions from one state to 

another -- as a result of the occurrence of a set of events -- when starting from a particular initial 

state or condition. The states are represented by nodes (e.g., a box) while the transitions are 

shown as directed arcs. The event that causes the transition is shown as an arc annotation, while 

the name of the state is inscribed in the node symbol. If an action is associated with the change of 

state, then this is shown on the connecting arc, next to the event. The rules that enable the event 

to effect the transition from one state to another can be shown also on the connecting arc in 

brackets. An example is shown in Fig. 10. 
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STATE 1 STATE 2
EVENT / ACTION   [Rules]

STATE 1 STATE 2
EVENT / ACTION   [Rules]

 
 

Figure 10.  A transition from State 1 to 2. 

 

Note that the Dynamics model is not an executable model. It characterizes in a static manner 

aspects of the dynamic behavior of the model. Furthermore, since a State Transition diagram 

represents the transitions from an initial condition and a sequence of events, it follows that to 

characterize a system’s behavior, many such diagrams are needed.  

 
3.5  Integrated Dictionary and Model Concordance 

Underlying all these four models is the Integrated System Dictionary. Since the individual 

models contain overlapping information, it becomes necessary to integrate the dictionaries 

developed for each one of them. Such a dictionary must contain descriptions of all the functions 

or activities including what inputs they require and what outputs they produce. These functions 

appear in the activity model (IDEF0), the Rule model (as actions), and the State Transition 

diagrams. The rules, in turn, are associated with activities; they specify the conditions that must 

hold for the activity to take place. For the conditions to be evaluated, the corresponding data 

must be available at the specific activity -- there must be an input or control in the IDEF0 

diagram that makes that data available to the corresponding activity. Of course, the system 

dictionary contains definitions of all the data elements as well as the data flows that appear in the 

activity model.  

The process of developing a consistent and comprehensive dictionary provides the best 

opportunity for ensuring concordance among the four models. Since each model has different 

roots and was developed to serve a different purpose, together they do not constitute a well 

integrated set. Rather, they can be seen as a suite of tools that collectively contain sufficient 

information to specify the architecture. The inter-relationships among models are complex. For 

example, rules should be associated with the functions at the leaves of the functional 
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decomposition tree.  This implies that, if changes are made in the IDEF0 diagram, then the rule 

model should be examined to determine whether rules should be reallocated and whether they 

need to be restructured to reflect the availability of data in the revised activity model.  A further 

implication is that the four models cannot be developed in sequence. Rather, the development of 

all four should be planned at the beginning with ample opportunity provided for iteration, 

because if changes are made in one, they need to be reflected in the other models. 

Once concordance of these models has been achieved, it is possible to construct an executable 

model. Since the physical architecture has not been constructed yet, the executable model can 

only be used to address logical and behavioral issues, but not performance issues.  

3.6  Conversion to the Executable Model 

Information Systems are dynamic in nature. Events occur that trigger the execution of 

functions and many functions can be executed concurrently. An executable model of an 

information architecture enables the architect to analyze the dynamic behavior of the 

architecture, identify logical and behavioral errors not easily seen in the static descriptions, and 

demonstrate to the customer or user the capabilities that the architecture enables. There exist 

some graphical modeling approaches that allow a dynamic representation of a discrete event 

system. Colored Petri Nets, Finite State Machines, and Behavior Diagrams are examples of such 

approaches. They can be used directly to model a discrete event dynamical system representation 

of an information architecture. The problem, however, is that they are much more complex than 

the four models already described and require substantial experience and expertise to ensure that 

they include all relevant system aspects. The solution is, therefore, to derive the executable 

model from the static representations. A methodology has been developed that allows the 

derivation of a Colored Petri Net model of an architecture that can be traced back to the four 

models. Note that the discrete event system representation is not suitable for representing many 

physical systems that best characterized by time driven processes as described by differential or 

difference equations. The logical and decision processes of a C4ISR system supporting the 

Command and Control process are an appropriate domain for discrete event modeling since the 

hardware consists primarily of computers and the overall system is software intensive. 

Colored Petri Nets [Jensen, 92] are a generalization of Petri Nets. The latter are bipartite 

directed multigraphs that are executable. In Petri Nets, two types of nodes are defined: Places 
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and Transitions. The arcs that join two nodes are directed; furthermore, arcs can connect only 

nodes of different types. Directed arcs connecting places to transitions establish the inputs to that 

transition, while arcs connecting transitions to places establish the outputs. The arcs can have 

inscriptions that define the degree of multiplicity of that arc. An illustrative Petri Net is shown in 

Fig. 11. 
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Figure 11.   A Petri Net 

In order for the Petri Net to execute and be a dynamical model, another element needs to be 

introduced. This is the token. A token is an indistinguishable marker that resides in places. The 

distribution of tokens in the places of a Petri Net is called a marking and defines the state of the 

system or net.  Markings enable transitions that can then fire. The execution rule is as follows. A 

transition is enabled if every one of its input places has at least as many tokens as the multiplicity 

inscribed on the arc connecting the place to the transition. An enabled transition can fire. When it 

fires, the tokens used to satisfy the enablement condition are removed from the net; new 

indistinguishable tokens are generated in the output places of the transition. The number of 

tokens generated depends on the multiplicity of the outgoing arcs. Fig. 12 shows an initial 

marking for the net of Fig. 11 that enables the transition and the results of the transition firing. 
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Figure 12.   Enablement and Firing of Transition 
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In Colored Petri Nets, the tokens are distinguishable; they are characterized by their color: an 

attribute vector is associated with each token. The assignment of values to the attributes from 

their respective domains specifies the color of the token. Color sets are associated with places; 

they specify which token can reside in that place. Instead of a simple multiplicity number 

inscription that was allowed on the arcs, now complex enablement conditions can be specified. 

Each input arc inscription specifies the number and type of tokens that need to be in the place for 

the transition to be enabled. The output arc inscriptions indicate what tokens will be generated in 

an output place when the transitions fires. Furthermore, guard functions associated with 

transitions are allowed. These guard functions specify additional conditions that must be 

satisfied, i.e., in addition to those inscribed on the arcs, for a transition to be enabled. Code 

segments can be associated with transitions. These code segments can represent the function 

modeled by the transition and complement the output arc inscriptions. 

Each Colored Petri Net model has associated with it a Global Declaration node that contains 

the definitions of all Color Sets and their associated domains and the definition of variables. It 

becomes apparent then that much of the data in the data dictionary appears in the global 

declaration node of the Colored Petri Net model. 

The use of Colored Petri Nets to develop an executable model from the Structured Analysis 

models can be described as follows. One starts with the activity model. Each IDEF0 activity is 

converted into a transition; each IDEF0 arrow connecting two boxes is replaced by an arc-place-

arc combination, (Fig. 13), and the label of the IDEF0 arc becomes the color set associated with 

the place. All these derived names of color sets are gathered in the Global Declaration Node. 

From this point on, a substantial modeling effort is required to make the Colored Petri Net model 

a dynamic representation of the system. The information contained in the data model is used to 

specify the color sets and their respective domains, while the rules in the rule model result in arc 

inscriptions, guard functions, and code segments.  

A1

A2

Data Data

 
 

Figure 13.  From IDEF0 to a Colored Petri Net representation 
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The process of deriving the executable model invariably leads to some revision of the static 

models. It is most important that discipline be exercised so that any change introduced at the 

executable model level is reflected back in the static models. Only this way a documented and 

easily reviewed representation of the architecture can be maintained. 

The executable model becomes the integrator of all the information; its ability to execute tests 

some of the logic of the model. Given the Colored Petri Net model, a number of analytical tools 

from Petri Net theory can be used to evaluate the structure of the model, e.g., determine the 

presence of deadlocks, or obtain its occurrence graph. The occurrence graph represents a 

generalization of the State Transition Diagram model. By obtaining the occurrence graph of the 

Petri Net model, which depicts the sequence of states that can be reached from an initial marking 

(state) with feasible firing sequences, one has obtained a representation of a set of State 

Transition Diagrams. This can be thought as a first step in the validation of the model at the 

behavioral level. Of course, the model can be executed to check its logical consistency, that is, to 

check whether the functions are executed in the appropriate sequence and that the data needed by 

each function are appropriately provided. Performance measures cannot be obtained until the 

physical architecture is introduced; it provides the information needed to compute performance 

measures.  

Since Colored Petri Nets with their dense annotation are not very easily accessible to the 

information system users, all the information gathered in the design and exploitation of the 

executable model need to be brought back into the static models. This annotated and validated 

representation now constitutes a sound basis for system development. 

 
3.7  The Physical Architecture 

To complete the Analysis phase of the procedure (Fig. 14), the Physical Architecture needs to 

be developed. There is no standardized way to represent the physical systems - existing ones as 

well as planned ones that will be used to implement the architecture. They range from wiring 

diagrams of systems to block diagram representations to node models to organization charts. 

While there is not much difficulty in describing in a precise manner physical subsystems using 

the terminology and notation of the particular domain (communication systems, computers, 
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displays, data bases), a problem arises on how to depict the human organization that is an 

integral part of the information system. The humans in the organization can not be thought 

simply as users; they are active participants in the workings of the information system and their 

organizational structure that includes task allocations, authority, responsibility, reporting 

requirements, etc., must be taken into account and be a part of the physical model description. 

This is an issue of current research, since traditional organizational models do not address 

explicitly the need to include the human organization as part of the physical system description.   
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Figure 14.  The Analysis Phase 

 

Once the physical architecture is available, then an Executable Model that can be used for 

performance evaluation can be obtained. The Synthesis phase is described in Fig. 15. In this 

phase, the information and knowledge generated in the Analysis phase are synthesized into the 

Executable Model.  As Fig. 15 shows, this can be viewed as a two stage process.  First, an 

executable model can be created based on the Functional Architecture View.  This Executable 

model can reveal logical and behavioral properties of the architecture that can be the focus of 

discourse with the customer or stakeholders.  Once satisfactory behavior has been demonstrated, 

the information contained in the Physical Architecture View can be incorporated in the 

Executable Model for performance evaluation. This requires an inter-relationship between the 

Functional and the Physical architecture views as shown by the bold two-way arrow. It is critical 

that the granularity of the two architecture views be comparable and that partitions have taken 

place in the hierarchical decompositions in a manner that allows functions or activities to be 
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assigned unambiguously to resources and vice versa. Once the parameter values and properties 

of the physical systems have become part of the data base of the executable model, performance 

evaluation can take place.  
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Figure 15.  The Synthesis Phase 

 
3.8  Logical, Behavior, and Performance Evaluation 

Measures of Performance (MOPs) are obtained either analytically or by executing the model 

in simulation mode. For example, if deterministic or stochastic time delays are associated with 

the various activities, it is possible to compute the overall delay or to obtain it through 

simulation. Depending on the questions to be answered, realistic scenarios of inputs need to be 

defined that are consistent with the Operational Concept. This phase allows for functional and 

performance requirements to be validated, if the results obtained from the simulations show that 

the Measures of Performance are within the required range. If not, the systems may need to be 

modified to address the issues that account for the encountered problems.  

This is actually an iterative process, as shown in Fig. 16. The Executable model can be used 

both at the logical and behavioral level as well as the performance level. The latter requires the 
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inclusion of the Physical architecture. In one consistent architectural framework supported by a 

set of models, requirements analysis, design, and evaluation can be performed. The creation of 

the Executable Model allows the focus of discourse to be on the behavioral and performance 

aspects of the architecture.  Furthermore, the process provides a documented set of models that 

collectively contain all the necessary information. 
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Figure 16.   An iterative process 

 
 
4.   C4ISR ARCHITECTURE FRAMEWORK, VERSION 2 PRODUCTS.   

Having reviewed the traditional systems engineering process from creating system 

architectures, we now turn our attention to the C4ISR Framework Version 2.  We start with a 

brief review of the products that are specified by the Framework.  This will be followed by the 

description of a process for generating these products after the architecture has been created 

using the systems engineering process.   

The C4ISR Framework presents four views: These are All View, Operational Architecture 

View, Systems Architecture View, and the Technical Architecture View.  Each view describes a 

particular characterization of the architecture using a set of products that are graphical, tabular, 

or textual.  The Framework characterizes each product as either essential or supporting.  This is 

an unfortunate terminology because it has the connotation that the supporting views are 

1/29/02 28



secondary.  As we shall see, this is not the case.  Most of the supporting products are necessary 

to produce a consistent and coherent description of an architecture and validate the essential 

products.  The intent of the characterization is to identify those products that are the minimum 

essential for presenting or delivering an architecture to the DoD.  It is not intended to mean that 

the supporting products are not necessary for describing an architecture.   The products are listed 

in Tables 1 through 4.   

 
Table 1. All View Products 

 

EssentialApplicable
Architecture

View

All Views
(Context)

All Views
(Terms)

Architecture Product

Overview and Summary
Information

Integrated Dictionary

Product
Reference

AV-1 

AV-2

 Essential

Essential

or
Supporting

 
For completeness, the next section provides a brief description of each of the products of the 

Framework.   

4.1  Architecture Views and Products 

As shown in Table 1, the All View is comprised on two products, both essential.  The 

Overview and Summary Information Product, AV-1, contains summary textual information that 

will allow quick reference and comparison among architectures.  This information includes the 

name of the architecture and the architect, its purpose, scope, and context.  It also describes 

major findings and recommendation that are based on the architecture.  The Integrated 

Dictionary is AV-2.  At a minimum, it is a glossary with definitions of terms used in every 

product in the architecture description.  The Integrated Dictionary is essential for allowing the 

architecture to stand alone, without reference to any other documents.   
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Table 2.  Operational Architecture View Products 
 

 

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

High-level Operational 
Concept Graphic

Command Relationships
Chart

Activity Model

Operational Rules Model

Operational State 
Transition Description

Operational Event/Trace
Description

Operational Node
Connectivity Description

Operational Information
Exchange Matrix

Logical Data Model

OV-1

OV-4

OV-5

OV-6a

OV-6b

OV-6c

OV-2

OV-3

OV-7

Essential

Essential

Essential

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

 
The Operational Architecture view is a description of the tasks and activities, operational 

elements, and information flows required to accomplish or support a military operation.  It is 

composed of seven products.  OV-1, the High Level Operational Concept Graphic is the most 

flexible of all the products designed to convey a high level description of the operation that the 

architecture supports.  It is generally composed of nodes, in the form of icons, and connectors.  

The icons represent organizations, assets, missions or tasks, and the connectors show information 

flows or connectivity.  The graphic can also show the relative geographic position of assets and 

tasks.  OV-1 must be accompanied with a textual description of the operational concept depicted 

in the graphic, even though this is not specified in the Framework document.   

OV-2, is the Operational Node Connectivity Description.  This essential product is a directed 

graph, whose nodes are operation nodes or elements and whose arcs, called need lines, show 

necessary connectivity and the flow of operational information elements between the nodes.  
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Each node is annotated with the activities it performs and each need line is annotated with the 

operational information element that flows from one operational node to another.  

OV-3 is the Operational Information Exchange Matrix, an essential product.  It contains, in 

tabular form, information about each Operational Information element that is contained in 

Operational Node Connectivity Description.  For each element it lists the producing and 

consuming operational node and activity as well as general information including a description, 

size, composition, frequency of occurrence, timeliness requirements, throughput, security level, 

and interoperability requirements.   

OV-4 is the Command Relationship Chart.  This supporting product describes a key 

organizational aspect of the operational concept that the architecture supports.  In its most basic 

form it is the standard organizational chart common to all DoD organizations.  Its intent is to 

illustrate important relationships between organizational elements in the architecture.  Such 

relationships include command, control, and coordination.  OV-4 shows an operational 

perspective of fundamental roles and management relationships between entities in the 

architecture.  These relationships typically form the basis of some of the connectivity 

requirements in the architecture. 

OV-5 is the Activity Model.  In its illustrations of the activity model, the Framework uses the 

Integrated Definition 0 (IDEF0) as the modeling technique.  IDEF0 has been standardized in 

Federal Information Processing Standard (FIPS) Publication – 183.  It is a hierarchical structure 

of activities, represented by boxes, and data or information exchanged between activities shown 

as arrows between the boxes.  The Framework states that these arrows include inputs, controls, 

outputs, and mechanisms (ICOMs) that is standard in the IDEF0 formalism.  The Framework 

does not mandate IDEF0 for the activity model and states that other modeling techniques may be 

used.  This is important because it allows some of the techniques used in object orientation to be 

used for OV-5. 
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Table 3.  System Architecture View Products  
 

 

System Performance
Parameters Matrix

Systems State Transition
Description

Systems Functionality 
Description

Operational Activity to System
Function Traceability Matrix

System Information 
Exchange Matrix

System Evolution 
Description

System Technology 
Forecast

Systems Rules  Model

Systems Event/Trace 
Description

Physical Data Model

SV-4

SV-5

SV-6

SV-7

SV-8

SV-9

SV-10a

SV- 10b

SV -10c

SV-11

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

Supporting

System Interface
DescriptionSV-1 Essential

Systems Communications 
DescriptionSV-2 Supporting

SV-3 Systems2 Matrix Supporting

Systems

Systems

Systems

Systems
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OV-6 is called the Operational Activity Sequence and Timing Descriptions.  It is composed of 

three supporting products, the Operational Rule Model (OV-6a), the Operational State Transition 

Description (OV-6b), and the Operational Event/Trace Description (OV-6c).  These set of 

products are used to describe the architecture’s dynamic properties.  The Operational Rule Model 

captures business requirements and concept of operation information.  The rules must be 

consistent with the activity and logical data models (OV-7) as well as the State Transition 

Diagrams (OV-6b).  The rules are expressed in a formal language, e.g. Structured English, 

Decision Trees and Tables, or Mathematical Logic.  The Operational State Transition 

Description (OV-6b) models the architecture’s response to specific stimuli.  State Transition 

Diagrams are the modeling technique that is used.  The Operational Event/Trace Description 

(OV-6c) trace sequence of events between operational nodes.  In general they have not been used 

in Structured Analysis approaches, however they are one of the standard models of object 

orientation.   

OV-7 is the Logical Data Model (LDM).  It is used to describe the data requirements that 

comprise the operational information exchange elements.  It shows data entities with their 

attributes and relationships between those entities.  The Framework does not specify a specific 

modeling technique for the LDM, leaving the select up to the architect depending on the purpose 

of the architecture.  The Framework illustrates the data model using the FIPS - 184 IDEF1X as 

an example of a formal data model. 

The System Architecture View is a description, including graphics, of systems and 

interconnections providing for, or supporting, warfighting functions.  It is composed of one 

essential product and twelve supporting products.  SV-1, the System Interface Description, is the 

only Essential Product in the System Architecture View.  It is similar to the physical architecture 

of the Structured Analysis approach.  It is a graphic consisting of nodes and connecting links.  

The nodes are called system nodes and should map to the operational nodes of the operational 

node connectivity description, OV-2.  The system nodes represent the physical implementation 

of one or more operational nodes.  The System Interface Description identifies interfaces 

between system nodes, systems within system nodes, and system components.  The interfaces are 

in the form of communications links or paths.  The System Interface Description has four 

variants.  The architect selects the variant(s) needed to support his architectural effort.  These 
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variants are the Internodal Perspective - Node Edge to Node Edge interfaces, the Internodal 

Perspective - System-to-System Interfaces, the intranodal perspective that shows the interfaces 

between systems within a system node, and the intrasystem perspective, that shows the interfaces 

between the components that comprise a system within a system node.   

SV-2 is the Systems Communication Description.  It provides more detail of the system 

interfaces.  It focuses on the physical implementation aspects of the needlines in the Operational 

Node Connectivity Description and also depicts pertinent information about the communications 

elements and services.  It has two variants, an internodal perspective and an intranodal 

perspective. 

SV-3 is Systems2 Matrix.  It is similar to an N2 matrix where the systems are listed in both 

rows and columns and each cell provides a description of the interface between the systems is 

one exists.  Characteristics of the interface include status (existing, planned, etc), category (C2, 

intelligence, etc.), classification level and means (specific network). 

SV-4 is the Systems Functionality Description.  It is an activity model based on the notion of 

Data Flow Diagrams (DFDs).  The activities, called transformations in DFDs, represent the 

system functions that are performing the operational activities described in the Activity Model of 

the Operational Architecture View (OV-5).  Its purpose is to depict data flows and data stores 

within system perspective.   

SV-5 is the Operational Activity to System Function Traceability Matrix.  It is a link between 

the Operational and System Architecture Views.  It reflects the result of the allocation the 

activities in the Operational Architecture View to the system functions in the System 

Architecture View.   

SV-6 is the System Information Exchange Matrix.  It is similar to and complements the 

Operational Information Exchange Matrix.  It is tabular in form and describes the information 

exchanges between systems within a node and from systems to systems between nodes.  

Associated with each system information element is a system function that either produces or 

receives the system information element.  The focus of this matrix is to describe the 

implementation of the information exchanged between systems (and their functions).  Therefore 

the matrix contains descriptions of characteristics of each element such as content, media, 

format, security level, frequency of exchange, timeliness requirements, etc.   
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SV-7 is the System Performance Parameters Matrix.  This product provides current and 

predicted or required future performance characteristics for each system component and element 

in the system architecture view.  This information is essential for the executable model if 

Performance Evaluation is to be accomplished.  

SV-8 is the System Evolution Description.  It is a timeline type of depiction of plans for 

modernizing or evolving the system over time.   

SV-9 is the System Technology Forecast.  It is a detailed description of emerging technologies 

that can impact the architecture.  It contains predictions about the availability of the technology 

and the potential impact the technology can have on the architecture.    

SV-10a, 10b, and 10c comprise the System Activity Sequence and Timing Descriptions.  

They were intended to describe the dynamic behavior of the architecture.  Recent discussions 

between the DoD and the authors reveals that the System Rules Model (SV-10a) and the System 

State Transition Description (SV-10b) are no longer included as products in the System 

architecture View.  The Systems Event/Trace Description (SV-10c) is a construct used in Object-

Oriented methodologies.  Like its counterpart in the Operational Architecture View, it is 

intended to shown the sequence of messages that are sent between System Nodes for a given 

initial situation.  Thus they present a static view of dynamic behavior.  

SV-11 is the Physical Data Model.  It is used to describe how the information represented in 

the Logical Data Model (OV-7) is implemented in the Systems Architecture View.  There is a 

mapping between the Logical Data Model and the Physical Data Model.  There is considerable 

flexibility as to the form that the Physical Data Model may take.  Typical descriptions include 

message formats, file structure descriptions and physical data schema representations.   

The Technical Architecture View conveys the set of rules that governs system 

implementation.  As was discussed before, it is analogous to the building code that an architect 

invokes in creating the architecture for a house or building.  This view is composed of two 

products, one essential and the other supporting.  The Technical Architecture Profile (TV-1) is 

the essential product.  This product references the technical standards that apply to the 

architecture and how they need to be implemented.  A typical Technical Architecture Profile is a 

table that list Service Areas (e.g. operating system, Data management, etc.), the Service (Kernel, 

Data Interchange, etc.) and the Standard to be applied (FIPS Pub 151-1, FIPS Pub 127-2, etc.).  
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TV-2 is the Standards Technology Forecast.  It extends the information contained in TV-1 to list 

anticipated updates and changes in applicable standards for the architecture.   

5  DEVELOPING A PROCESS FOR CREATING THE FRAMEWORK PRODUCTS 

The C4ISR Framework Version 2.0 products represent a different perspective than that of the 

traditional Structured Analysis that has orthogonal Functional and Physical Architecture views.  

Traditional tools and techniques support the Structured Analysis approach and research has 

shown [Levis et al., 99] that this approach is complete only in the sense that it contains all the 

information and data needed to produce an executable model.  Actually, the Structured Analysis 

approach underlies the Framework products.  Several of the Framework products are identical to 

those used in Structured Analysis.   

The only guidance provided by the Framework document is shown in Fig. 17. Six steps are 

defined for the development of an architecture. These are fundamental steps; it is the 

responsibility of the (chief) architect that they be followed in every architecture development 

effort. The first step reinforces the idea that architectures must be designed for a purpose, to 

address a particular set of problems. This purpose and the associated problems must be 

articulated before the development of the architecture and the production of products begins. The 

next step is the determination of the scope of the architecture. In systems engineering terms, this 

corresponds to determining the system boundary, i.e., determining which elements are going to 

be considered within the architecture and which will be considered as part of the environment. 

The third step is closely related to the first one: the choice of attributes that are to be included is 

directly dependent on the questions to be answered. At this point, the architect is ready to 

determine which supporting products are needed in addition to the essential products. Note that 

the first four stages require the involvement of few persons – the architect, the users, and a small 

staff that supports the architect. The fifth step is the labor intensive one in which the architecture 

is designed and the products developed. This step is guided by the previous four steps; failure to 

do that may easily result in a set of products that will be unable to address the last, and most 

critical step, the use of the architecture for the intended purpose, i.e., to provide answers to the 

original questions. The development of the executable model could be included either in step 5 

or 6. Note that the first four steps are really the responsibility of the DoD organization that is 
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developing the C4ISR architecture while the 5th and 6th steps can be done by industry; the first 

fours steps set up the requirements while the last two are the actual design. 
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Figure 17   Universal guidance for Architecture development 

 

The steps addressed by this and the two companion papers [Wagenhals et al., 00], [Bienvenu 

et al., 00] are step 5 and part of step 6. The two steps can be decomposed as shown in Fig. 18. 

First, the architect and his team develop the architecture using the Structured Analysis tools and 

techniques that were described in Section 3, or any other approach such as object orientation.  If 

the architecture representation is complete in the sense that the executable model is obtainable, 

then the C4ISR Architecture Framework products can be derived. This statement requires 

clarification. It is possible to derive an executable model from the Operational Architecture view 

alone. Such a model can only address some logical and behavioral questions. To address 

1/29/02 37



performance questions, the System Architecture view is needed. If the architecture has been 

defined and all the information resides in an integrated data base, then one can see the products 

as nothing else but a set of reports drawn from the data base. Indeed, this is the concept that 

allows the use of alternative methodologies for the design of the architecture and forms the 

theoretical justification for a software product such as JCAPS [00].  

The executable model requires some additional information not specified explicitly in the 

Framework: it needs timing information and it needs a set of scenaria to run simulations  and 

collect data for the Measures of Performance and the Measures of Effectiveness. 
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Figure 18.  Template of the Architecture design process 

Given this design process, the next step is to develop specific procedures that realize the 

functions indicated in each one of the boxes. Two different procedures have been developed, one 

based on Structured Analysis [Wagenhals et al., 00] and one on object orientation [Bienvenu et 

al., 00]. The process that follows the lower branch of Fig. 18 is straightforward and well 

understood for a number of years [Levis, 99]. However, one may think of the upper branch as a 

constraint on the lower one: it is not sufficient to obtain any design and any executable model; 

the design should produce the products specified by the C4ISR Architecture Framework. To 

achieve that, a reverse engineering procedure was followed. 

Each one of the Framework products was considered a data entity composed of other data 

entities and a formal IDEF1x data model of the set products was created.  This model contained 

over 100 entities.  Of those 100 entities, 16 were identified a key entities that are necessary to 
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understand the mapping between the Structured Analysis products and the Framework products.  

These entities and their relationships are shown in Fig. 19 in the form of an Entity-Relationship 

diagram.   
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In this E-R diagram, the entities are partitioned into two categories: entities associated with 

the operational architecture view and entities associated with the systems architecture view.  This 

partition is indicated by the horizontal line in Fig.19.  

Starting with the operational view, the key entities are the operational nodes and operational 

elements.  The operational nodes are the graphic constructs that appear in the Operational Node 

Connectivity Description (OV-2).  The operational elements are specified in the Operational 

Information Exchange Matrix (OV-3).  Each graphical operational node in OV-2 represents one 

or more operational elements, and, therefore, can contain one or more operational elements.  
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These nodes and the elements they represent do not have to be real physical facilities.  Instead 

they can represent notional or “virtual” nodes and elements based on the operators’ view of 

operational roles.  These roles are normally associated with organizations that have assets that 

comprise the systems that ultimately perform the activities of the architecture.  Thus each 

operational node represents or contains operational elements that perform activities and receive 

and produce operation information elements.  The Operational Node Connectivity Description 

also has directed arcs between the operational nodes that are called needlines.  The needlines 

indicate the need for connectivity between operational nodes.  The need for the connectivity is 

based on the operational information elements that must flow between the activities that are 

performed at the operational nodes.   

There are several mappings between key entities of the Operational Architecture View and 

Systems Architecture View.  The operational nodes map to systems nodes that are graphical 

constructs in the System Interface Description (SV-1) and the Systems Communications 

Description (SV-2).  Each system node represents or contains systems.  Systems, in turn are 

composed of system components that are in turn composed of system elements.  These are also 

part of SV-1 and SV-2.  These systems, components and elements perform system functions that 

are the physical implementation of the activities described in the operational architecture view.  

Because they represent real physical entities, each system, component, and element has 

performance parameters associated with it.   The systems, components and elements are 

connected together via communications assets such as Local Area Networks (LANs) and Wide 

Area Networks (WANs).  These networks provide interfaces between the systems, components, 

and elements.  These networks provide communications links between the systems that 

implement the needlines of the Operational Architecture View.  System information elements, 

which are the physical implementation of the operational information elements flow over the 

links between the systems, component, and elements as the system functions are performed.   

Together, these key entities support the creation of most of the Framework products.  For the 

operational architecture view, in addition to OV-2 and OV-3, the organizations are represented in 

the Command Relationship Chart (OV-4), the activities and their relationships are specified in 

the Activity Model (OV-5), and the Operational Information Elements are described in the 

Logical Data Model (OV-7).  For the Systems Architecture View, in addition to SV-1 and SV-2, 

the system functions and their relationships are expressed in the System Functionality 
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Description (SV-4), the relationship between system functions are described in the System2 

Matrix (SV-3), the allocation of the activities to system functions is defined in the Operational 

Activity to System Functions Traceability Matrix (SV-4), the characteristics of the system 

information elements are described in the Physical Data Model (SV-11), the relationship 

between system information elements and system functions are specified in the System 

Information Exchange Matrix (SV-6), and the system performance parameters are described in 

the System Performance Parameter Matrix (SV-7).   

Given the understanding of the key entities of the Framework products and the formal 

procedure for creating an architecture using Structured Analysis, it is possible to show the 

relationship between the elements of the Structured Analysis descriptions of the architecture and 

the Framework products.  Recall that the structure analysis process begins with the description of 

the operational concept for accomplishing a mission that is used to guide the development of 

both the functional architecture and the physical architecture views.  The latter also includes 

organizational models.  Throughout the Structured Analysis process, the functional and physical 

architecture views are balanced.  This process was depicted in Fig. 15 of Section 3. 

Figure 20 shows the Analysis phase of Fig. 15 overlaid on the model of the Key Entities.  The 

implied process begins with the creation of the operational concept.  Note that this can be 

defined in the Operational Concept Graphic (OV-1).   The operational concept guides the 

development of the functional decomposition, the physical architecture composed of system 

nodes and links, and the organization model.  It also guides the selection of the operational 

nodes.   

The functional decomposition contains the activities and is used to guide the development of 

the functional architecture.  This is composed of the activity model, that is OV-5, the Logical 

Data Model, OV-7, and the rule model, OV-6a.  The dynamics model (OV-6b) is created in the 

form of a State Transitions Diagram.  The arrows between these models reflect the need to 

ensure concordance between the models.  Implied, but not shown is the Integrated Dictionary, 

AV-2.  Figure 20 also depicts the physical architecture view as the system nodes with systems, 

system elements, and system components, and the links that connect them.   
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Figure 20.   Relationship Between Analysis Phase and Framework Key Entities 
 

These fundamental relationships among the key entities induce a partial ordering of them and 

of the Framework products. This partial order forms the basis for a process for creating the 

architecture. The process can be based either on Structured Analysis constructs, as is done here, 

or on Object-Oriented ones [Bienvenu et al., 00]  

Note that this is not presented as a recommended process to use in developing a C4ISR 

architecture. Rather, it is a reverse-engineered process, based on Structured Analysis constructs, 

that identifies the interrelationships among products. Organizations involved in the design of 

architectures often have their own approach or process for developing architectures but are 

uncertain whether their process will meet the C4ISR Architecture Framework requirements. We 

have been suggesting to these organizations (both military and industrial) that they compare their 

process to the one described here as a means of assessing whether they have covered all the 

aspects they need and whether they need to modify or enhance their process by recognizing some 
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interrelationships between products at an early stage. For example, this process identifies 

Information Exchange Requirements, an essential product, as one of the outputs of the process, 

not one of the inputs. This is not to say that such data need not be collected – rather, the final list 

is the result of the analysis embedded in the execution of any thorough process. 

 
7.  CONCLUSIONS 

We have discussed the creation of architectures for information systems in general and 

explored a process for creating the Essential and Supporting Products of the DoD C4ISR 

Architecture Framework Version 2.0.  The Framework, by its depictions of example products, 

has a Structured Analysis bias in its representation of the products that represent three views of 

an architecture.  It does not provide or recommend a process for creating these products, but only 

some universal guidance. In this paper, we have shown using Structured Analysis that it is 

possible to develop a process that generates these products and also provides the necessary 

information for the derivation of an executable model. In the two companion papers, explicit 

processes are described and the same example is used to show how these processes can be 

implemented.   
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